I. PURPOSE
This written program complies with the OSHA Electrical Safety Standard 29 CFR 1910.331 through 1910.335, the NFPA 70E Standard for Electrical Safety in the Workplace, and COMM Chapter 16. This policy applies to all work operations at UW-Platteville performed by UW-Platteville employees and outside contractors where employees may be exposed to live parts and/or those parts that have been de-energized. This policy has been established to:

- Ensure the safety of employees who may work on or near electrical equipment
- Ensure that employees understand and comply with safety standards related to electrical work.
- Ensure that campuses, agencies and employees follow uniform practices during the progress of electrical work.
- Comply with OSHA standards according to the following 6 points
 1. Provide and demonstrate a safety program with defined responsibilities
 2. Determine the degree of arc flash hazard by qualified personnel
 3. Affix warning labels on equipment
 4. Provide personal protective equipment (PPE) for workers
 5. Provide documented training to workers on LOTO procedures and the hazards of arc flash
 6. Provide appropriate tools for safe work

II. APPLICATION
This policy applies to both Qualified persons and Unqualified persons who are working on, near, or with the following electrical installations:

1. Premises Wiring - installations of electrical conductors and equipment within or on buildings or other structures, and on other premises such as yards, carnival, parking and other lots and industrial substations
2. Wiring for connection to supply - installations of conductors that connect to the supply of electricity
3. Other Wiring - installations of other outside conductors on the premises
4. Optical fiber cable - installations of optical fiber cable where such installations are made along with electrical conductors
5. Exposed Energized Parts - Installations that involve work performed by unqualified persons on or near exposed energized parts

III. DEFINITIONS
Approach Boundaries (Shock)
1. **Limited**: An approach limit at a distance from an exposed live part within which a shock hazard exists. Also considered *working near* a live part.

2. **Restricted**: An approach limit at a distance from an exposed live part within which there is an increased risk of shock, due to electrical arc over combined with inadvertent movement, for personnel working in close proximity to any live part.

3. **Prohibited**: An approach limit at a distance from an exposed live part within which work is considered the same as making contact with the live part. Also considered *working on* a live part.

Arc Flash: Energy released during an arcing fault that occurs when current flows through a medium not intended to conduct electrical current. Essentially, an Arc Flash is a short circuit through the air emitting extreme heat, sound, pressure, and metal fragments.

Arc Rating: The maximum incident energy resistance demonstrated by a material (or a layered system of materials) prior to break-open or at least the onset of a second-degree skin burn, which is expressed in cal/cm².

De-energized: A condition that is free from any electrical conductor or circuit part to be worked on or near has been disconnected from energized parts, locked out in accordance with company policy, tested to ensure the absence of voltage, and grounded if deemed necessary.

Electrical Hazard: A dangerous condition such that contact with or equipment failure can result in electric shock, arc flash burn, thermal burn, or blast.

Electrically Safe Work Condition: A state, in which the electrical conductor or circuit part to be worked on or near has been disconnected from energized parts, locked out in accordance with company policy, tested to ensure the absence of voltage, and grounded if deemed necessary.

Live Parts: Energized conductive components. Circuit components are considered live until placed into an Electrically Safe Work Condition.

Qualified Person: A person permitted to work on or near exposed energized parts who has been trained in and familiar with:

1. The skills and techniques necessary to distinguish exposed live parts from other parts of electric equipment
2. The skills and techniques necessary to determine the nominal voltage of exposed live parts
3. The knowledge, skills and techniques to work safely on energized circuits
4. The proper use of special precautionary techniques, personal protective equipment, insulating and shielding materials, and insulated tools
5. The clearance distances for work performed near overhead lines that are specified in the OSHA standard that appears in 29 CFR 1910.333 and the corresponding voltages to which

Shock Hazard: A dangerous condition associated with the possible release of energy caused by contact or approach to live electrical components.

Unqualified Person: A person with little or no training in avoiding the electrical hazards of working on or near exposed energized parts.

On or Near: Close enough to exposed line parts (by either personal contact or contact by tools or materials) for an employee to be exposed to any hazard they present.
IV. ELECTRICAL HAZARDS

Some of the electricity-related hazards include electric shock and burns, arc-flash burns, arc-blast impacts, and falls.

- **Electric shock and burns**: an electric shock occurs when electric current passes through the body. This can happen when touching an energized part. If the electric current passes across the chest or head, death can result. At high voltages, severe burns can result.

- **Arc-flash burns**: an electric arc flash can occur if a conductive object gets too close to a high-amp current source or by equipment failure (for instance, while opening or closing disconnects). The arc can heat the air to temperatures as high as 35,000 degrees F, an vaporize metal in the equipment. The arc flash can cause severe skin burns by direct heat exposure and by igniting clothing.

- **Arc-blast impacts**: The heating of air and vaporization of metal creates a pressure wave that can damage hearing and cause memory loss (from concussion) and other injuries. Flying metal parts are also a hazard.

- **Falls**: Electric shocks and arc blasts can cause falls, especially from ladders or unguarded scaffolding.

V. GENERAL REQUIREMENTS

Appropriate safe work practices will be employed to prevent electric shock or other injuries resulting from either direct or indirect electrical contacts, when work is performed near or on equipment or circuits that are or may be energized. Those specific work practices will be consistent with the nature and extent of the associated electrical hazards.

VI. HAZARD CONTROL

The following control methods will be used to prevent occurrence of electrically-related incidents:

Engineering Controls

- All electrical distribution panels, breakers, disconnects, switches and junction boxes must be completely enclosed
- Water-tight enclosures must be used if any of these components could possibly be exposed to moisture
- Structural barriers must be used to prevent accidental damage to electrical components
- Conduits must be supported for their entire length, and non-electrical attachments to conduits are prohibited
- Non-rigid electrical cords must have strain relief wherever necessary

Administrative Controls

- Only trained, authorized employees may repair or service electrical equipment
- Contractors must be licensed to perform electrical work
• Physical barriers must be used to prevent unauthorized persons from entering areas where new installation or repair of electrical components or equipment is being performed
• Only authorized employees may enter electrical distribution rooms
• All electrical control devices must be labeled properly
• Senior facility management must authorize any work on energized electrical circuits

Work Practice Controls
• Employees covered under this policy must wear electrically rated personal protective equipment as deemed appropriate and necessary by NFPA 70E Table 130.7(C)(10)
• Use only tools that are properly insulated. Each tool shall be inspected prior to each use.
• Non-conductive gloves will be available for work on electrical equipment
• Electrical-rated matting will be placed in front of all electricity-distribution panels

VII. ELECTRICAL EQUIPMENT INSPECTIONS
Inspect all electrical equipment for hazards that could cause employee injury or death. Consider the following factors when determining the safety of the equipment:
• Suitability for the intended use
• Proper insulation
• Heating effects under conditions of use
• Arcing effects
• Classification by type, size, voltage, current capacity and intended use

VIII. WORK ON OR NEAR EXPOSED DE-ENERGIZED PARTS
This section applies to work on exposed de-energized parts or near enough to them to expose the employee to any electrical hazard they present. Conductors and parts of electric equipment that have been de-energized but have not been locked out or tagged in accordance with appropriate standards and shall be treated as energized parts.
1. Live parts to which an employee may be exposed will be de-energized before any employee works on or near them, unless de-energizing will introduce additional or increased hazards or is not feasible due to equipment design or operational limitations (See below for examples). Live parts that operate at less than 50 volts to ground need not be de-energized if there will be no increased exposure to electrical burns or to explosion due to electric arcs.
 a. Examples of increased or additional hazards include: interruption of life support equipment, deactivation of emergency alarm systems, shutdown of hazardous location ventilation equipment, or removal of illumination for an area.
 b. Examples of work that may be performed on or near energized circuit parts because of infeasibility due to equipment design or operational limitations include: testing of electric circuits that can only be performed with the circuit energized and work on circuits that form an integral part of a continuous process that would otherwise need to be completely shut down in order to permit work on one circuit or piece of equipment.
2. Whenever any employee is exposed to contact with parts of fixed electric equipment or circuits that have been de-energized, the circuits energizing the parts will be properly locked out in the following manner:

 a. A lock and a tag shall be placed on each disconnecting means used to de-energize circuits and equipment on which work is to be performed. The lock shall be attached so as to prevent persons from operating the disconnecting means unless they resort to undue force or the use of tools.

 b. Each tag shall contain a statement prohibiting unauthorized operation of the disconnecting means and removal of the tag.

 c. If a lock cannot be applied, or if the employer can demonstrate that tagging procedure will provide a level of safety equivalent to that obtained by the use of a lock, a tag may be used without a lock.

 d. A tag without a lock shall be supplemented by at least one additional safety measure that provides a level of safety equivalent to that obtained by use of a lock. Examples of additional safety measures include the removal of an isolating circuit element, blocking of a controlling switch, or opening of an extra disconnecting device.

 e. A lock may be placed without a tag only under all of the following conditions:
 i. Only one circuit or piece of equipment is de-energized.
 ii. The lockout period doesn’t extend beyond the work shift
 iii. Employees exposed to the hazard associated with reenergizing the circuit or equipment is familiar with this procedure.

3. Safe procedures for de-energizing circuits and equipment will be determined before circuits or equipment are de-energized.

4. The circuits and equipment to be worked on will be disconnected from all electric energy sources. Control circuit devices, such as push buttons, selector switches, and interlocks, may not be used as the sole means for de-energizing circuits or equipment. Interlocks for electric equipment may not be used as a substitute for lockout procedures.

5. Stored electric energy that might endanger personnel will be released before starting work. Capacitors shall be discharged and high capacitance elements shall be short-circuited and grounded, if the stored electric energy might endanger personnel.

6. Stored non-electrical energy in devices that could reenergize electric circuit parts will be blocked or relieved to the extent that the circuit parts could not be accidentally energized by the device.

7. No work will be performed on or near de-energized live parts, circuits or equipment until their de-energized condition has been verified. Verification of the de-energized condition will be made as follows:

 a. A qualified person will operate the equipment operating controls or otherwise verify that the equipment cannot be restarted.

 b. A qualified person will use test equipment to test the circuit elements and electrical parts of equipment to which employees will be exposed and will verify that the circuit elements and equipment parts are de-energized.

 c. The test shall also determine if any energized condition exists as a result of inadvertently induced voltage or unrelated voltage back feed even though specific parts of the circuit have been de-energized and presumed to be safe.
d. If circuit to be tested is over 600 volts, nominal, the test equipment shall be checked for proper operation immediately after this test.

8. Before any circuit or equipment is reenergized (even temporarily) the following requirements will be met in the order listed:
 a. A qualified person will conduct tests and visual inspections, as necessary, to verify that all tools, electrical jumpers, shorts, grounds, and other such devices have been removed, so that the circuits and equipment can be safely energized.
 b. Employees exposed to the hazards associated with reenergizing the circuit or equipment will be warned to stay clear of circuits and equipment.
 c. Each lock and tag will be removed by the employee who applied it or under his or her direct supervision.
 d. If that employee is absent from the workplace, then the lock may be removed provided that it is certain that the employee who applied the lock is not available at the workplace, and that employee is made aware that the lock has been removed before he or she resumes work.
 e. There will be a visual determination that all employees are clear of the circuits and equipment.

IX. WORK ON OR NEAR EXPOSED ENERGIZED PARTS

Energized electrical work means that repair, maintenance, troubleshooting, or testing on electrical circuits, components, or systems while energized (i.e., live). Some common tasks where there may be a need to work on or near live circuits include:

• Taking voltage measurements
• Opening and closing disconnects and breakers
• Racking breakers on and off the bus
• Removing panels and dead fronts
• Opening electric equipment doors for inspection

1. In those cases where the exposed live parts are not de-energized, either because of increased or additional hazards or because of infeasibility due to equipment design or operational limitations, other safety-related work practices must be used to protect employees who may be exposed to the electrical hazards involved.
 The work practices used must protect employees against contact with energized circuit parts directly with any part of their body or indirectly through some other conductive object or where employees are near enough to be exposed to any hazard they present.

2. Before any energized work can begin, an **Energized Electrical Work Permit** shall be completed and approved by the employee’s supervisor. The Risk Management Officer will need a copy of the Energized Electrical Work Permit.

2. Only qualified persons may work on electric circuit parts or equipment that has not been de-energized. These employees must be familiar with the proper use of special precautionary techniques, personal protective equipment, insulating and shielding materials, and insulated tools.
3. Whenever work is to be performed near overhead lines, the lines will be de-energized and grounded, or other protective measures will be provided before work is started.

4. When overhead lines are to be de-energized, arrangements to de-energize and ground them will be made with the organization that operates or controls the electrical circuits involved.

5. When protective measures are provided such as guarding, isolating, or insulating, those precautions shall prevent employees from contacting such lines directly with any part of their body or indirectly through conductive materials, tools, or equipment.

6. Only qualified employees will be permitted to install insulating devices on overhead power transmission or distribution lines.

7. Whenever an unqualified employee is working in an elevated position near overhead lines, the location will be such that the person and the longest conductive object he or she may contact cannot come closer to any unguarded, energized overhead line than the following distances:
 - a. For voltages to ground 50kV or below - 10ft. (305cm);
 - b. For voltages to ground over 50kV - 10 ft. (305cm) plus 4 inches (10 cm) for every 10kV over 50kV.

8. Whenever an unqualified employee is working on the ground in the vicinity of overhead lines, the person may not bring any conductive object closer to unguarded, energized overhead lines than the distances given above.

9. For voltages normally encountered with overhead power lines, objects which do not have an insulating rating for the voltage involved are considered to be conductive.

10. Whenever a qualified person is working in the vicinity of overhead lines, whether in an elevated position or on the ground, the person may not approach or take any conductive object without an approved insulating handle closer to exposed energized parts than that shown in Table S-5 of 29 CFR 1910.333(c)(3) (see paragraph 11 below), unless:
 - a. The person is insulated from the energized part. Gloves, with sleeves if necessary, rated for the voltage involved, are considered to be insulation of the person from the energized part on which work is performed, or
 - b. The energized part is insulated both from all other conductive objects at a different potential and from the person, or
 - c. The person is insulated from all conductive objects at a potential different from that of the energized part.

11. The minimum safe approach distances are as follows:
<table>
<thead>
<tr>
<th>Voltage Range (Phase to Phase)</th>
<th>Minimum Approach Distance</th>
</tr>
</thead>
<tbody>
<tr>
<td>300V and less</td>
<td>Avoid Contact</td>
</tr>
<tr>
<td>Over 300V, not over 750 V</td>
<td>1 ft. 0 in. (30.5cm)</td>
</tr>
<tr>
<td>Over 750V, not over 2kV</td>
<td>1 ft. 6 in. (46 cm)</td>
</tr>
<tr>
<td>Over 2kV, not over 15kV</td>
<td>2 ft. 0 in. (61 cm)</td>
</tr>
<tr>
<td>Over 15kV, not over 37kV</td>
<td>3 ft. 0 in. (91 cm)</td>
</tr>
<tr>
<td>Over 37kV, not over 87.5kV</td>
<td>3 ft. 6 in. (107 cm)</td>
</tr>
<tr>
<td>Over 87.5V, not over 121kV</td>
<td>4 ft. 0 in. (122 cm)</td>
</tr>
<tr>
<td>Over 121kV, not over 140kV</td>
<td>4 ft. 6 in. (137 cm)</td>
</tr>
</tbody>
</table>

12. Any vehicle or mechanical equipment capable of having parts of its structure elevated near energized overhead lines will be operated so that a clearance of 10 ft. (305 cm) is maintained. If the voltage is higher than 50kV, the clearance will be increased 4 in. (10 cm) for every 10kV over that voltage. However, under any of the following conditions, the clearance may be reduced:
 a. If the vehicle is in transit with its structure lowered, the clearance may be reduced to 4 ft. (122 cm). If the voltage is higher than 50kV, the clearance will be increased 4 in. (10 cm) for every 10kV over that voltage.
 b. If insulating barriers are installed to prevent contact with the lines, and if the barriers are rated for the voltage of the line being guarded and are not a part of or an attachment to the vehicle or its raised structure, the clearance may be reduced to a distance within the designed working dimensions of the insulating barrier.
 c. If the equipment is an aerial lift insulated for the voltage involved, and if the work is performed by a qualified person, the clearance (between the uninsulated portion of the aerial lift and the power line) may be reduced to the distance given in said Table S-5 (see paragraph no. 11, above).

13. Employees standing on the ground may not contact the vehicle or mechanical equipment or any of its attachments, unless:
 a. The employee is using protective equipment rated for the voltage; or
 b. The equipment is located so that no uninsulated part of its structure (that portion of the structure that provides a conductive path to employees on the ground) can come closer to the line than permitted in paragraph number 12 (see above) (10 feet).

14. If any vehicle or mechanical equipment capable of having parts of its structure elevated near energized overhead lines is intentionally grounded, employees working on the ground near the point of grounding will not stand at the grounding location whenever there is a possibility of overhead line contact.

15. Additional precautions, such as the use of barricades or insulation, will be taken to protect employees from hazardous ground potentials, depending on earth resistivity and fault currents that can develop within the first few feet or more outward from the grounding point.
16. Employees may not enter spaces containing exposed energized parts, unless illumination is provided that enables the employees to perform the work safely.
17. Where lack of illumination or an obstruction precludes observation of the work to be performed, employees may not perform tasks near exposed energized parts.
18. Employees must not reach blindly into areas which may contain energized parts.
19. Whenever an employee works in a confined or enclosed space (such as a manhole or vault) that contains exposed energized parts, he/she must be provided with, and he will use, protective shields, protective barriers, or insulating materials as necessary to avoid inadvertent contact with those parts.
20. Doors, hinged panels, and the like that are present in any confined or enclosed space will be secured to prevent their swinging into an employee and causing the employee to contact exposed energized parts.
21. Conductive materials and equipment that are in contact with any part of an employee’s body will be handled in a manner that will prevent them from contacting exposed energized conductors or circuit parts.
22. Whenever an employee must handle long dimensional conductive objects (such as ducts and pipes) in areas with exposed live parts, appropriate work practices (such as the use of insulation, guarding and material handling techniques) shall be instituted which will minimize the hazard.
23. Only wooden ladders or ladders with nonconductive side rails if they are used where the employee or the ladder could contact exposed energized parts.
24. Conductive articles of jewelry and clothing (such as watch bands, bracelets, rings, key chains, necklaces, metalized aprons, cloth with conductive thread, or metal headgear) may not be worn if they might contact exposed energized parts. However, such articles may be worn if they are rendered nonconductive by covering, wrapping, or other insulating means.
25. Where live parts present an electrical contact hazard, employees may not perform housekeeping duties at such close distances to the parts that there is a possibility of contact, unless adequate safeguards (such as insulating equipment or arrears) are provided.
26. Electrically conductive cleaning materials (including conductive solids such as steel wool, metalized cloth, and silicon carbide, as well as conductive liquid solutions) may not be near energized parts unless appropriate procedures are followed that will prevent electrical contact.
27. Only a qualified person following the requirements of the procedures set forth in this section of the policy may defeat an electrical safety interlock and then only temporarily while he or she is working on the equipment.
28. The interlock system will be returned to its operable condition when such work is completed.

X. PORTABLE ELECTRIC EQUIPMENT

1. All cord-and plug-connected electric equipment, flexible cord sets (extension cords), and portable electric equipment will be handled in a manner that will not cause damage.
2. Flexible electric cords connected to equipment may not be used for raising or lowering the equipment.
3. Flexible cords may not be fastened with staples or otherwise hung in such a fashion as could damage the outer jacket or insulation.

4. Portable cord- and plug-connected equipment and flexible cord sets (extension cords) shall be visually inspected before use and missing pins, or damage to outer jacket or insulation, and for evidence of possible internal damage (such as pinched or crushed outer jacket). However, cord and plug-connected equipment and flexible cord sets (extension cords) which remain connected once they are put in place and are not exposed to damage need not be visually inspected until they are relocated.

5. If there is a defect or evidence of damage that might expose an employee to injury, the defective or damaged item will be removed from service, and no employee may use it until necessary repair and tests have been made to render the equipment safe.

6. Whenever an attachment plug is to be connected to a receptacle (including any on a cord set), the relationship of the plug and receptacle contacts will first be checked to ensure that they are of proper mating configurations.

7. A flexible cord used with grounding-type equipment will contain an equipment grounding conductor.

8. Attachment plugs and receptacles may not be connected or altered in a manner that would prevent proper continuity of the equipment grounding conductor at the point where plugs are attached to receptacles. Additionally, those devices may not be altered to allow the grounding pole of a plug to be inserted into slots intended for connection to the current carrying conductors.

9. Adapters that interrupt the continuity of the equipment grounding connection may not be used.

10. Portable electric equipment and flexible cords used in highly conductive work locations (such as those inundated with water or other conductive liquids), or in job locations where employees are likely to contact water or conductive liquids, shall be approved for those locations.

11. Employees’ hands may not be wet when plugging and unplugging flexible cords and cord and plug-connected equipment, if energized equipment is involved.

12. Energized plug and receptacle connections may be handled only with insulating protective equipment if the condition of the connection could provide a conducting path to the employee’s hand (if, for example, a cord connector is wet from being immersed in water).

13. Locking-type connectors will be properly secured after connection.

XI. ELECTRIC POWER AND LIGHTING CIRCUITS

1. Load-rated switches, circuit breakers, or other devices specifically designed as disconnecting means will be used for the routine opening, reversing, or closing of circuits under load conditions.

2. Cable connectors not of the load-break type, fuses, terminal lugs, and cable splice connections may not be used for such purposes, except in an emergency.

3. After a circuit is de-energized by a circuit protective device, the circuit may not be manually reenergized until it has been determined that the equipment and circuit can be safety energized. However, when it can be determined from the design of the circuit and the
overcurrent devices involved that the automatic operating of a device was caused by an overload, connected equipment is needed before the circuit is reenergized.

4. Repetitive manual reclosing of circuit breakers or reenergizing circuits through replaced fuses is prohibited.

5. Overcurrent protection of circuits and conductors may not be modified, even on a temporary basis, beyond that allowed by the COMM/OSHA standard regulating the installation safety requirements for overcurrent protection (See 29 CFR 1910.304(e)).

XII. TEST INSTRUMENTS AND EQUIPMENT

1. Only qualified persons may perform testing work on electric circuits or equipment.

2. Test instruments and equipment and all associated test leads, cables, power cords, probes, and connectors will be visually inspected for external defects and damage before the equipment is used. If there is a defect or evidence of damage that might expose an employee to injury, the defective or damaged item will be removed from service, and no employee may use the item until necessary repairs and tests to render the equipment safe have been made.

3. Test instruments and equipment and their accessories will be rated for the circuits and equipment to which they will be connected and will be designed for the environment in which they will be used.

XIII. FLAMMABLE OR IGNITABLE MATERIALS

1. Flammable materials include, but are not limited to: flammable gases, vapors, or liquids; combustible dust and ignitable fibers or filings.

2. In those situations where flammable materials are present only occasionally, electric equipment capable of igniting them will not be used, unless measures are taken to prevent hazardous conditions from developing.

3. In those situations where flammable vapors, liquids or gases, or combustible dusts or fibers are (or may be) present on a regular basis, the electrical installation requirements contained in the COMM/OSHA standard regulating hazardous locations must be observed (See 29 CFR 1910.307).

XIV. PERSONAL PROTECTION SAFEGUARDS

1. Employees working in areas where there are potential electrical hazards will be provided with, and will use, electrical protective equipment that is appropriate for the specific parts of the body to be protected and for the work to be performed. This equipment may include rubber protective equipment such as insulating gloves, blankets, hoods, line hose, sleeves, and matting for use around electric apparatus. Employees are expected to wear long sleeve cotton shirts.

2. Protective equipment will be maintained in a safe, reliable condition and will be periodically inspected and/or tested. Rubber gloves will be sent to a lab for testing every 6 months.

3. If the insulating capability of protective equipment may be subject to damage during use, the insulating material shall be protected. For example, an outer covering of leather can be used for the protection of rubber insulating material.

4. Employees will wear nonconductive head protection wherever there is a danger of head injury from electric shock or burns due to contact with exposed energized parts.
5. Employees will wear protective equipment for the eyes or face wherever there is danger of injury to the eyes or face from electric arcs or flashes or from flying objects resulting from electrical explosion.

6. No jewelry or metal objects linked keys or a belt buckle shall be worn.

7. When working near exposed energized conductors or circuit parts, each employee will use insulated tools or handling equipment if the tools or handling equipment might make contact with such conductors or parts. If the insulating capability of insulated tools or handling equipment is subject to damage, the insulating material will be protected.

8. Fuse handling equipment, insulated for the circuit voltage, will be used to remove or install fuses when the fuse terminals are energized.

9. Ropes and handlines used near exposed energized parts shall be nonconductive.

10. Protective shields, protective barriers, or insulating materials will be used to protect each employee from shock, burns, or other electrically related injuries while that employee is working near exposed energized parts which might be accidentally contacted or where dangerous electric heating or arcing might occur.

11. When normally enclosed live parts are exposed for maintenance or repair, they will be guarded to protect unqualified persons from contact with their live parts.

XV. ALERTING TECHNIQUES
Alerting techniques will be used to warn and protect employees from hazards which could cause injury due to electric shock, burns, or failure of electric equipment parts as follows:

a. Safety Signs and Tags: Safety signs, safety symbols, or accident prevention tags will be used where necessary to warn employees about electrical hazards which may endanger them.

b. Barricades: Barricades will be used in conjunction with safety signs where it is necessary to prevent or limit employee access to work areas exposing employees to uninsulated energized conductors or circuit parts. Conductive barricades may not be used where they might cause an electrical contact hazard.

c. Attendants: If signs and barricades do not provide sufficient seaming and protection from electrical hazards, an attendant will be stationed to warn and protect employees.

XVI. CONTRACTOR EMPLOYEES
Safety programs used by contractors must meet or exceed all applicable guidelines of this Safety Program. Contractors are required to comply with applicable Safety and Health regulations such as OSHA, NFPA, and EPA. Contractors may be required to submit copies of their safety program to the safety coordinator upon request.

XVII. TRAINING
1. Appropriate training will be provided for those employees who face a risk of electric shock in the form of classroom and/or on the job instruction.
2. Each employee required to be trained will become familiar with the safe work practices required by this policy and those sections of the COMM/OSHA Electrical Standard that pertain to his/her respective job assignment(s).

3. Qualified persons (i.e. those persons permitted to work on or near exposed energized parts) will, at a minimum, be trained in the following:
 a. The skills and techniques necessary to distinguish exposed live parts from other parts of electric equipment,
 b. The skills and techniques necessary to determine the nominal voltage of exposed parts, and
 c. The clearance distances specified in Table S-5 of 29 CFR 1910.333(c) (see paragraph #14 of Part VI of this Policy) and the corresponding voltages to which the qualified person will be exposed.
<table>
<thead>
<tr>
<th>Description of Circuit/Equipment:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Justification for why equipment cannot be de-energized:</td>
</tr>
</tbody>
</table>

TO BE COMPLETED BY THE ELECTRICALLY QUALIFIED PERSONS DOING THE WORK:

All items below must be filled out (if applicable) and checked before work may be performed.

- [] Description of the safe work practices to be employed:
- [] Detailed job description procedure to be used in performing the above detailed work:
- [] Results of Shock Hazard Analysis:
 - Determination of Shock Protection Boundaries:
- [] Results of the Arc Flash Hazard Analysis:
 - Determination of the Arc Flash Protection boundary:
- [] All Natural Fiber Outerwear is worn.
- [] Fire Retardant clothing is being worn
 - All measuring/testing tools (voltmeter, multi-meter, Ampere meter, etc.) are rated to be safely used on the equipment to be work on.
- [] Insulated tools and equipment required.
- [] Remove all jewelry and metal apparel.
- [] Use safety signs, attendants, or other means of barricading to restrict the access of unqualified persons from the work area.
 - Do you agree the above described work can be done safely?
 - [] Yes
 - [] No

AUTHORIZED WORKERS that understand and agree to the above:

<table>
<thead>
<tr>
<th>Print Name(s)</th>
<th>Signature</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

APPROVAL(S) TO PERFORM THE WORK WHILE ELECTRICALLY ENERGIZED:

<table>
<thead>
<tr>
<th>Department Supervisor:</th>
<th>Date:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Please give a completed copy of this form to the Risk Management Officer.